
Pragmatic model checking: 
from theory to implementations

Niels Lohmann

1 2 3How does a
model checker

work?

How to build an
effective model

checker?

How to use a
model checker
pragmatically?

1 2 3How does a
model checker

work?

How to build an
effective model

checker?

How to use a
model checker
pragmatically?

Model checking in a nutshell

�4

model
checker'

yes

no

model

specification counterexample)

witness path)
(

(

Model checking in a nutshell

�4

model
checker'

yes

no

model

specification counterexample)

witness path)

memory
overflow

(

(

State explosion
business process* with 66 parallel branches

�5

modeled by IBM
customers using the
IBM Websphere
business modeler

*

State explosion
business process* with 66 parallel branches

state space: 
266 ≈ 2.37 ∙ 1019 markings

�5

modeled by IBM
customers using the
IBM Websphere
business modeler

*

State explosion
business process* with 66 parallel branches

state space: 
266 ≈ 2.37 ∙ 1019 markings

memory for state space: 
608 exabytes** (66 bit per marking)

�5

modeled by IBM
customers using the
IBM Websphere
business modeler

** mega, giga, peta, 
 tera, exa…

*

State explosion
business process* with 66 parallel branches

state space: 
266 ≈ 2.37 ∙ 1019 markings

memory for state space: 
608 exabytes** (66 bit per marking)

time for state space generation  
7799 years (10 CPU cycles/marking at 3 GHz)

�5

modeled by IBM
customers using the
IBM Websphere
business modeler

** mega, giga, peta, 
 tera, exa…

*

State explosion
business process* with 66 parallel branches

state space: 
266 ≈ 2.37 ∙ 1019 markings

memory for state space: 
608 exabytes** (66 bit per marking)

time for state space generation  
7799 years (10 CPU cycles/marking at 3 GHz)

energy consumption for state space generation  
2,9 megatons of TNT (at 50 watts)

�5

modeled by IBM
customers using the
IBM Websphere
business modeler

** mega, giga, peta, 
 tera, exa…

*

State explosion
business process* with 66 parallel branches

state space: 
266 ≈ 2.37 ∙ 1019 markings

memory for state space: 
608 exabytes** (66 bit per marking)

time for state space generation  
7799 years (10 CPU cycles/marking at 3 GHz)

energy consumption for state space generation  
2,9 megatons of TNT (at 50 watts)

�5

modeled by IBM
customers using the
IBM Websphere
business modeler

** mega, giga, peta, 
 tera, exa…

*

The core algorithm

• search is a simple depth first
search (+ SCC detection)

• check depends on the
nature of the property and
may terminate search

• enabled and fire implement
the Petri net firing rule

�6

markings = []
search(m0,φ)
!

def search(m,φ):
 check(m,φ)
 markings.add(m)
 for t in enabled(m):
 m' = fire(m,t)
 if not m' in markings:
 search(m',φ)

!

!

!

!

1
2
3
4
5
6

Reduction techniques

apply theoretic results to
1. store fewer markings
2. fire fewer transitions / 

generate fewer markings
3. store markings more efficiently

�7

while preserving the property
⎫ 
⎬ 
⎭

1. Partial order reduction
observation: concurrent
transitions can be fired in
any order, yielding the same
final state

idea: fix one ordering by
postponing the firing of
some transitions

implementation: search on
Petri net structure

�8

1. Partial order reduction

algorithm (sketch):

• choose one activated
transition

• until fixed point is reached:
add all conflicting transitions

only fire these transitions

�9

1. Partial order reduction

algorithm (sketch):

• choose one activated
transition

• until fixed point is reached:
add all conflicting transitions

only fire these transitions

�9

1. Partial order reduction

algorithm (sketch):

• choose one activated
transition

• until fixed point is reached:
add all conflicting transitions

only fire these transitions

�9

1. Partial order reduction

algorithm (sketch):

• choose one activated
transition

• until fixed point is reached:
add all conflicting transitions

only fire these transitions

�9

1. Partial order reduction

algorithm (sketch):

• choose one activated
transition

• until fixed point is reached:
add all conflicting transitions

only fire these transitions

�9

1. Partial order reduction

algorithm (sketch):

• choose one activated
transition

• until fixed point is reached:
add all conflicting transitions

only fire these transitions

�9

1. Partial order reduction

algorithm (sketch):

• choose one activated
transition

• until fixed point is reached:
add all conflicting transitions

only fire these transitions

�9

2. Symmetry reduction
observation: symmetric models
(e.g. due to copies of
components) have symmetric
behavior

idea: do not store markings if a
symmetric copy is already
stored

implementation: Petri net
graph automorphisms

�10

i1

r1

c1 c2

i2

r2

s

2. Symmetry reduction

�11

i1

r1

c1 c2

i2

r2

s

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphisms

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphisms

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphisms

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphisms

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphisms

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphisms

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphismssymmetric markings

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphismssymmetric markings

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphismssymmetric markings

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

2. Symmetry reduction

�12

i1

r1

c1 c2

i2

r2

s

graph
automorphismssymmetric markings

2. Symmetry reduction

�13

[i1,s,i2]

[i1,s,r2]

[i1,c2]

[r2,c2][c1,r2]

[c1,i2]

[r1,s,i2]

[r1,s,r2]

complete state space reduced state space

3. State compression

observation: the value of some
places depend on the value of
others

idea: do not store markings of
“implicit places”

implementation: Petri net
place invariants

�14

i1

r1

c1 c2

i2

r2

s

m = [1,0,0,0,0,0,1]
i1 r1 c1 i2 r2 c2s

3. State compression

�15

place invariants: for all
reachable markings m:

m(c1) + m(c2) + m(s) = 1 
m(i1) + m(c1) + m(r1) = 1 
m(i2) + m(c2) + m(r2) = 1

i1

r1

c1 c2

i2

r2

s

m = [1,0,0,0,0,0,1]
i1 r1 c1 i2 r2 c2s

3. State compression

�16

i1

r1

c1 c2

i2

r2

s

place invariants: for all
reachable markings m:

m(c1) + m(c2) + m(s) = 1 
m(i1) + m(c1) + m(r1) = 1 
m(i2) + m(c2) + m(r2) = 1

therefore:

m(s) = 1 − m(c1) − m(c2) 
m(i1) = 1 − m(c1) − m(r1) 
m(i2) = 1 − m(c2) − m(r2) i1, i2, and s are implicit

m = [1,0,0,0,0,0,1]
i1 r1 c1 i2 r2 c2s

Reduction techniques: implementation

�17

markings = []
c = compressor()
s = symmetries()
search(m0,φ)
!

def search(m,φ):
 check(m,φ)
 markings.add(c.compress(m))
 for t in selection(enabled(m)):
 m' = fire(m,t)
 if not s.symm(m') in markings:
 search(m',φ)

!

!

!

!

!

!

1
2
3
4
5
6

• compressor and
symmetries preprocess
the net

• compress creates
shorter marking vectors

• selection chooses some
enabled transitions

• symm checks if
symmetric marking is
already stored

Reduction techniques: summary

• can be combined

• a lot of them work on the 
Petri net structure

• preprocessing pays off

• some are Petri net exclusive

• decades of research

�18

1 2 3How does a
model checker

work?

How to build an
effective model

checker?

How to use a
model checker
pragmatically?

Key: Pragmatism

• in the end: we only optimize a small depth-first search… 
… that is run billions of times

• we need to understand every aspect

• pragmatism is key: we want a result at all costs
�20

good news
model checking

is decidable

bad news
at a devastating
complexity

The programming language: C++

�21

manual memory  
management

portability
preprocessor

optional 
object orientation

type system

low-level 
optimization

threading

Used anti-patterns
• heavy use of preprocessor (conditional

compilation, compile-time decisions,
architecture-dependent constants)

• god objects

• a lot of global variables

• no standard libraries/ 
generic algorithms (STL, Boost)

• remember: performance, not reusability
�22

Data structures

�23

syntactic sugar

class hierarchies

generated code/ 
standard libraries

focus on simplicity

canonic representation

flat C-style arrays

simple and user-specified 
data types

focus on performance

backend (verification)frontend (parser)

A remark on complexity

• While solving an EXPSPACE-complete problems, 
don’t be afraid of complexity!

• Preprocessing and optimizations 
can have dramatic impact.

• NP-complete (SAT-solving) or  
NP-hard (integer linear programming) 
problems can be “feasible”.

�24

Formalism

�25

low-level Petri nets
WS-BPEL

AI planning

verification formalismmodeling formalisms

- varying feature set 
- domain dependent 
- moving target, short lifespan

- no structural restrictions 
- domain independent 
- sound, mature theory

compilers

Petri net model checking

• exploit domain knowledge to optimize core functions

• firing transitions

• storing markings

• know lifecycle of concepts

• often contradicts object orientation

�26

Checking enabledness

�27

orange transition 
is disabled

Checking enabledness

�27

scapegoat 
place

orange transition 
is disabled

Checking enabledness

�27

blue 
transition 

fires

scapegoat 
place

orange transition 
is disabled

Checking enabledness

�27

blue 
transition 

fires

scapegoat 
place

orange transition 
is disabled

scapegoat place
still unmarked

Checking enabledness

�27

blue 
transition 

fires

scapegoat 
place

orange transition 
is disabled

scapegoat place
still unmarked

orange transition 
is still disabled⇒

Storing markings

�28

[0,1,3,2,0]

[0,1,3,2,1]

[0,1,3,3,1]

markings

00 01 11 10 00

00 01 11 11 01

00 01 11 10 01

bit vectors bin tree

00 01 11 10 00

00 01 11 11 01

00 01 11 10 01

Storing markings

�28

[0,1,3,2,0]

[0,1,3,2,1]

[0,1,3,3,1]

markings

00 01 11 10 00

00 01 11 11 01

00 01 11 10 01

bit vectors bin tree

00 01 11 10 00

00 01 11 11 01

00 01 11 10 01

Storing markings

�28

[0,1,3,2,0]

[0,1,3,2,1]

[0,1,3,3,1]

markings

00 01 11 10 00

00 01 11 11 01

00 01 11 10 01

bit vectors bin tree

00 01 11 10 00

1 01

00 01 11 10 01

Storing markings

�28

[0,1,3,2,0]

[0,1,3,2,1]

[0,1,3,3,1]

markings

00 01 11 10 00

00 01 11 11 01

00 01 11 10 01

bit vectors bin tree

00 01 11 10 00

1 01

00 01 11 10 01

Storing markings

�28

[0,1,3,2,0]

[0,1,3,2,1]

[0,1,3,3,1]

markings

00 01 11 10 00

00 01 11 11 01

00 01 11 10 01

bit vectors bin tree

00 01 11 10 00

1 01

01

Know what you need

• sometimes, only a special case is needed:

• Tarjan algorithm where only TSCCs are needed

• linear algebra (sparse matrix, only carrier is needed)

• no library can offer this

�29

Optimizations

• profiling, low-level optimizations (caching)

• know your limits: (in LoLA: malloc)

�30

Academic software design

�31

hardly any tenure
programmers

definitely no coding
professionalscoding is never

top priority
maintenance is
not enforced

frequently
changing staff

hard to collect/
keep knowledge

very fast 
scientific progress

there is no
(paying) customer

seldom seen as important

your thesis is!

people leave frequently and for good

once the paper is out, nobody cares

university cannot teach experience

no agreed feature set

moving targets

2-5 year contracts

Lessons learned
• prototyping and check on real data

• KISS; few dependencies

• split large tools to smaller 
“brain-sized” units

• test coverage to avoid the fear of
breaking everything

• goal orientation: 
no UI, integration via streams

�32

1 2 3How does a
model checker

work?

How to build an
effective model

checker?

How to use a
model checker
pragmatically?

Verification questions: the don’ts

�34

Don’t order
unordered things.

Don’t use the
X operator.

Don’t ask for
global states.

Don’t ask two
things at once.

Usually, all components should be
correct, not just component #1.

Usually, only a few aspects (marking
of a few places) are relevant.

If the properties affect different parts
of the model, ask separately.

In distributed systems, it makes no
sense to ask for “the” next state.

Verification questions: the dos

�35

Ask simple
questions.

Sometimes, you don’t need
temporal logics at all.

Make a
verification model.

Manipulating the original model
may help to ask simpler questions.

Use domain
knowledge.

Exploit implicit assumptions about
the model and the property.

Simple properties

lesson: (hardly) no need 
for complex CTL* formulae
compilers will help to find best match

�36

EF φ reachability of φ trivial check function

AG φ ¬EF ¬φ again reachability

AGEF φ check for φ
in all TSCC

reachability + 
TSCC detection

complex simple reason

TSCCSCC

Checking relaxed soundness

�37

Definition: A workflow net is relaxed sound iff for all
transitions exists a terminating firing sequence.

if choices are not
synchronized, the net
deadlocks

but every transition
can fire in a
terminating sequence

net is relaxed sound

i o

Net manipulation: algorithm

�38

i o

t

pt

1. for all transitions t: create a net with test place pt:

2. check for EF (pt > 0 ⋀ o = 1)

Net manipulation: summary

�39

− check 8 nets instead of 1

+ checking reachability is simpler than extended CTL

+ each state space is smaller than the original

+ one counterexample for each failure

+ parallelizable

Checking soundness

�40

Definition: A workflow net is sound iff (1) the final
marking [o] is always reachable (2) [o] is the only
marking with tokens on place o, and (3) no
transition is dead.

+ domain knowledge: nets are free-choice

Definition: A free-choice workflow net is sound iff 
(1) AGEF [o] holds, 
(2) the net is 1-safe, and 
(3) no transition is dead.

Checking soundness

�41

Definition: A free-choice workflow net is sound iff (1) AGEF
[o] holds, (2) the net is 1-safe, and (3) no transition is dead.

(1) check if the marking [o] is
reachable in all TSCCs.

(2) for every join-place p, check if m
with m(p)>1 is reachable.

(3) for every transition t, check if •t is
reachable

X =
p

t

Pragmatic use: summary

• help the model checker help you

• reformulate your question

• many small state spaces are better than one large

�42

1 2 3How does a
model checker

work?

How to build an
effective model

checker?

How to use a
model checker
pragmatically?

Conclusions

Take home points

• model checking = theory + practice + pragmatism

• academic software design is a discipline on its own

• asking the right question(s) is crucial

�44

Pragmatic model checking: 
from theory to implementations

Niels Lohmann

Copyrights
Atombombentest Romeo, public domain United States Department of Energy  
http://commons.wikimedia.org/wiki/File:Castle_Romeo.jpg

Raspberry Pi, CC-BY-SA Jwrodgers 
http://commons.wikimedia.org/wiki/File:RaspberryPi.jpg

apoptosis inducing factor, GPL  
http://en.wikipedia.org/wiki/File:Apoptosis_inducing_factor.png

Tux, by lewing@isc.tamu.edu 
http://en.wikipedia.org/wiki/File:Tux.png

Integrated Circuit, public domain 
http://commons.wikimedia.org/wiki/File:Chip.jpg

Websphere software logo, public domain  
http://commons.wikimedia.org/wiki/File:Websphere_logo.png

BPMN logo, copyright Object Management Group (OMG)
�46

http://commons.wikimedia.org/wiki/File:Castle_Romeo.jpg
http://commons.wikimedia.org/wiki/File:RaspberryPi.jpg
http://en.wikipedia.org/wiki/File:Apoptosis_inducing_factor.png
http://en.wikipedia.org/wiki/File:Tux.png
http://commons.wikimedia.org/wiki/File:Chip.jpg
http://commons.wikimedia.org/wiki/File:Websphere_logo.png

